Crean un sistema que detecta los efectos adversos de los fármacos usando las redes sociales

Fármacos.

,

SINC

  • El sistema sigue en tiempo real la información sobre salud que generan los pacientes en redes sociales, como Twitter o blogs especializados.
  • Analiza sus comentarios con técnicas de procesamiento del lenguaje natural.
  • Las reacciones adversas a medicamentos son la cuarta causa de muerte en pacientes hospitalizados en EE UU.

Las reacciones adversas a medicamentos (RAM) son el problema más importante de seguridad en el campo de la salud. Se refieren a los efectos dañinos y no intencionados que producen los fármacos en el tratamiento de enfermedades y profilaxis, ya sea cuando se administran dosis normales, ya sea cuando se incurre en  errores de medicación o usos incorrectos. Son la cuarta causa de muerte en pacientes hospitalizados en EE UU.

Determinadas RAM no se descubren durante los ensayos clínicos dado que no pueden conocerse hasta que el fármaco lleva varios años en el mercado. Por ello, las agencias de medicamentos deben vigilar las RAM una vez comercializado el medicamento, y el principal instrumento del que disponen son los sistemas de notificación voluntaria en los que profesionales y pacientes informan sobre sospechas de RAM (en España los pacientes pueden informar desde julio de 2012).

Ahora, investigadores de la Universidad Carlos III de Madrid (UC3M) han desarrollado un método para detectar los efectos negativos de los medicamentos siguiendo en tiempo real la información sobre salud que generan los pacientes en redes sociales, como Twitter o blogs especializados. El prototipo analiza sus comentarios por medio de técnicas de procesamiento del lenguaje natural.

Cada cinco segundos se realizan 170.000 búsquedas en Google sobre salud, lo que convierte a este campo en la tercera categoría más buscada, explican los investigadores. “Los ciudadanos generan ahora mucha información, de modo que las redes sociales pueden ser una valiosa fuente para descubrir efectos adversos de los medicamentos una vez el fármaco ha finalizado la fase de ensayos clínicos y empieza a comercializarse”, apunta una de las investigadoras, Isabel Segura Bedmar, del departamento de Informática de la UC3M. La gran cantidad de datos que deben almacenarse, su variedad y la velocidad con la que se ven modificados hacen de este un problema típico de big data.

El prototipo que han creado estos científicos, en el marco del proyecto de investigación europeo TrendMiner, permite analizar los comentarios en redes sociales por medio de técnicas de procesamiento del lenguaje natural (PLN). Gracias a estas técnicas, las descripciones coloquiales de los pacientes se “traducen” a datos manejables en estudios comparativos que permitan la obtención de patrones, tendencias, etc.

“Estos datos pueden también combinarse con los obtenidos de otras fuentes, como son las historias clínicas electrónicas de los pacientes; en ellas aparece información muy útil sobre diagnósticos, tratamientos, etc., también descrita en gran parte en lenguaje natural, por lo que es necesario codificarla y convertirla en información estructurada con la que poder trabajar”, explica otra de las investigadoras, la profesora Paloma Martínez, del Laboratorio de Bases de Datos Avanzadas de la UC3M.

El prototipo que han creado para analizar comentarios en redes sociales incorpora un procesador lingüístico que reconoce las menciones de fármacos, efectos adversos y enfermedades. El sistema visualiza la evolución de estas menciones y sus “coocurrencias”, es decir, registra qué fármacos se mencionan y con qué efectos adversos.

Por ejemplo, el sistema monitoriza fármacos pertenecientes a la familia de los ansiolíticos y para ello no solo tiene en cuenta las menciones de los principios activos o medicamentos genéricos de este grupo (entre otros el lorazepam y el diazepam) sino también las marcas comerciales (como el Orfidal). Todas estas menciones se pueden analizar además en relación con sus efectos terapéuticos (entre los cuales están Orfidal indicado para ansiedad) y sus efectos adversos (tales como Orfidal  puede producir temblores).

Esta tecnología la podría emplear también una farmacéutica para “saber qué se está diciendo de un fármaco, por ejemplo, o para recabar sospechas sobre efectos adversos y así complementar las notificaciones recibidas por los canales tradicionales”, comenta José Luis Martínez Fernández, profesor del departamento de Informática de la UC3M.

,
Crean un sistema que detecta los efectos adversos de los fármacos usando las redes sociales,
Fuente: http://www.20minutos.es/rss/salud/, Salud,

Sabes Compartir on EmailSabes Compartir on FacebookSabes Compartir on TwitterSabes Compartir on Youtube
Sabes Compartir
Editor at comosabes.com
Siempre necesitamos mensajes, ideas o humor para compartir con amigos en redes sociales, la vida es mas rica compartida, Lo Mejor de la Vida es Como Sabes Compartir lo mejor para el mundo, amigos, vecinos y familias.

Acerca de Sabes Compartir

Siempre necesitamos mensajes, ideas o humor para compartir con amigos en redes sociales, la vida es mas rica compartida, Lo Mejor de la Vida es Como Sabes Compartir lo mejor para el mundo, amigos, vecinos y familias.
Marcar el Enlace permanente.